• Arxada
  • Bell Equipment
  • Foresta Timber & Board
  • FSC Logo
  • Hin-Tech Manufacturing
  • John Deere
  • Khulani Timber Industries
  • LESH
  • Loadtech Load Cells
  • Ponsse
  • Rance Timbers
  • Sappi
  • SAWPA
  • SSA
  • Timber Solutions M3
  • UCL Sawmill
  • Wood-Mizer
  • Wuhlf

Post: Haplogenome assembly reveals structural variation in Eucalyptus interspecific hybrids

Haplogenome assembly reveals structural variation in Eucalyptus interspecific hybrids

Abstract

Background
De novo phased (haplo)genome assembly using long-read DNA sequencing data has improved the detection and characterization of structural variants (SVs) in plant and animal genomes. Able to span across haplotypes, long reads allow phased, haplogenome assembly in highly outbred organisms such as forest trees. Eucalyptus tree species and interspecific hybrids are the most widely planted hardwood trees with F1 hybrids of Eucalyptus grandis and E. urophylla forming the bulk of fast-growing pulpwood plantations in subtropical regions. The extent of structural variation and its effect on interspecific hybridization is unknown in these trees. As a first step towards elucidating the extent of structural variation between the genomes of E. grandis and E. urophylla, we sequenced and assembled the haplogenomes contained in an F1 hybrid of the two species.
 
Findings
Using Nanopore sequencing and a trio-binning approach, we assembled the separate haplogenomes (566.7 Mb and 544.5 Mb) to 98.0% BUSCO completion. High-density SNP genetic linkage maps of both parents allowed scaffolding of 88.0% of the haplogenome contigs into 11 pseudo-chromosomes (scaffold N50 of 43.8 Mb and 42.5 Mb for the E. grandis and E. urophylla haplogenomes, respectively). We identify 48,729 SVs between the two haplogenomes providing the first detailed insight into genome structural rearrangement in these species. The two haplogenomes have similar gene content, 35,572 and 33,915 functionally annotated genes, of which 34.7% are contained in genome rearrangements.
 
Conclusions
Knowledge of SV and haplotype diversity in the two species will form the basis for understanding the genetic basis of hybrid superiority in these trees.
 
Read the full paper Here: www.academic.oup.com/gigascience
 
Source: Giga Science
Haplogenome
Back to NEWS:
BUSINESS  l  CLIMATE CHANGE  l  CONSTRUCTION  l  EDUCATION  l  ENVIRONMENT  l  FORESTRY ENGINEERING  l  FORESTRY  l  GOVERNMENT  l  INTERNATIONAL  l  LAND  l  RECYCLING l  RESEARCH  l  ROOFING  l  SHORT HAUL  l  SILVICULTURE  l  SOCIAL RESPONSIBILITY  l  TRANSPORT  l  TREATMENT  l  TRANSPORT  l  VALUE ADDING
This article is tagged in:
  • Afrequip
  • Alternative Structures Logo
  • Ezigro Seedlings
  • FABI
  • Husqvarna
  • ICFR
  • Kwamahlati Training Services
  • Logmech
  • Merensky
  • Mondi
  • Those who grow alone, die alone: why transformation is strategic for the MTO Group
  • NCT
  • Novelquip Forestry
  • Pangolin
  • Patula Risk
  • R & B Timber Group Logo
  • SAFCOL
  • Saw Specialists
  • Stihl
  • Sunshine Seedling Services
  • TWK
  • WoodBiz Africa
  • Afrequip
  • Alternative Structures Logo
  • Arxada
  • Bell Equipment
  • Ezigro Seedlings
  • FABI
  • Foresta Timber & Board
  • FSC Logo
  • Hin-Tech Manufacturing
  • Husqvarna
  • ICFR
  • John Deere
  • Khulani Timber Industries
  • Kwamahlati Training Services
  • LESH
  • Loadtech Load Cells
  • Logmech
  • Merensky
  • Mondi
  • Those who grow alone, die alone: why transformation is strategic for the MTO Group
  • NCT
  • Novelquip Forestry
  • Pangolin
  • Patula Risk
  • Ponsse
  • R & B Timber Group Logo
  • Rance Timbers
  • SAFCOL
  • Sappi
  • Saw Specialists
  • SAWPA
  • SSA
  • Stihl
  • Sunshine Seedling Services
  • Timber Solutions M3
  • TWK
  • UCL Sawmill
  • Wood-Mizer
  • WoodBiz Africa
  • Wuhlf

Business Directory Registration Enquiry

We are proud to have been marketing businesses large and small for the past 25 years. As our online business directory is strictly industry related only businesses related to the forestry / timber value chain will be listed.
Your Name(Required)
Once you submit your details we will get in touch with you to advise on the way forward.
This field is for validation purposes and should be left unchanged.

Subscribe To Our Newsletter

* indicates required

Haplogenome assembly reveals structural variation in Eucalyptus interspecific hybrids

Contact Form

Name(Required)